Selasa, 20 September 2011

Transmitting air variable capacitor

Transmitting air variable capacitor
Differential variable capacitors also have two independent stators, but unlike in the butterfly capacitor where capacities on both sides increase equally as the rotor is turned, in a differential variable capacitor one section's capacity will increase while the other section's decreases, keeping the stator-to-stator capacitance constant. Differential variable capacitors can therefore be used in capacitive potentiometric circuits.

The one requirement of transmitting variable capacitors (and certain antenna tuning capacitors) is the ability to withstand high voltages. The high-power ham radio or AM broadcast transmitter will have a dc potential of 1500 to 7500 V on the RF amplifier anode, depending on the type of tube used. If amplitude-modulated,the potential can double. Also, if certain antenna defects arise, then the RF voltages in the circuit can rise quite high. As a result, the variable capacitor used in the final amplifier anode circuit must be able to withstand these potentials.
Two forms of transmitting variables are typically used in RF power amplifiers and antenna tuners. Figure 7 shows a transmitting air variable capacitor. The shaft of this particular capacitor is nylon, so it can be mounted either with the frame grounded or with the frame floating at high voltage. The other form of transmitting variable is the vacuum variable. This type of capacitor is a variation of the piston capacitor, but it has a vacuum dielectric (K factor = 1.0000). The model shown in Fig. 8 is a 18- to 1000-pF model that is driven from a 12-Vdc electric motor. Other vacuum variables are manually driven.

Vacuum variable capacitor

Tidak ada komentar:

Posting Komentar